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4Motivation

CREATE-AV HELIOS

Can high-order CFD methods be used for extreme-scale simulations?
• What do we mean by high-order methods? Why do we need them?
• What do we mean by extreme-scale simulations?
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NVIDIA V100

7.8 TFLOPS Double Precision

Can high-order CFD methods be used for extreme-scale simulations?



6Challenges

Traditional High-Order Method Challenges

Computationally Costly
general FEM construction

Stability Issues
ad-hoc correction

Multiscale Challenges
unstructured methods (generally 2nd order)

FD, HO FV stencils for AMR
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8Governing Equations

Compressible Navier-Stokes Equations



9Governing Equations

Continuous to Discrete
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11Discretization

Finite Element Method

1.) Multiply by test function

2.) Integrate over mesh element

3.) Integrate by parts once

ɪ ɪɪ ɪɪɪ
ɪ. Temporal Derivative Integral

ɪɪ. Weak Form Volume Integral

ɪɪɪ. Surface Integral



12Discretization

Finite Element Method

1.) Multiply by test function

2.) Integrate over mesh element

3.) Integrate by parts once

ɪ ɪɪ ɪɪɪ
ɪ. Temporal Derivative Integral

ɪɪ. Weak Form Volume Integral

ɪɪɪ. Surface Integral



13Test and Basis Functions

Lagrange Interpolating Polynomial

One-Dimensional 

Modal

Nodal



14Solution Expansion

Solution Expansion

Gauss Legendre

Gauss Lobatto Legendre 
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Solution Expansion

Gauss Legendre

Gauss Lobatto Legendre 



16Numerical Integration

Gauss Legendre Gauss Lobatto Legendre 

Collocation

Solution Points = Integration Points
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Term III

i-1 i i+1

Q

Inviscid Flux

Lax Friedrichs

Viscous Flux

Symmetric Interior 

Penalty
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i-1 i i+1
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23Semi-Discrete Formulation

Explicit Runge-Kutta Methods
2-Stage, 2nd-Order SSP-TVD RK2

3-Stage, 3rd-Order SSP-TVD RK3

4-Stage, 4th-Order RK 3/8-rule



24Verification

• Exact solution of 2D 

Inviscid equations

• Asymptotic error reduction

Ringleb Flow



25Verification

Taylor-Green Vortex
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29Computational Efficiency

Peak Performance Time Per DOF

General Basis VS Tensor Basis
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Peak Performance Time Per DOF

Viscous VS Inviscid



31Discontinuous Galerkin vs Finite Difference
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33Parallel Scalability

Strong Scaling on ANL Mira

• Taylor-Green Vortex

• Fully periodic

• Mesh: 512 x 512 x 512 

• Fifth order: p = 4

• 16.8 Billion DOFs   

83.9 Billion unknowns

• 2 MPI ranks per core

64% faster
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Robustness
Split Formulation with Summation By Parts



39Summation By Parts

- discrete mass matrix 

- discrete derivative matrix 

Strong Form Differential

Gauss Lobatto 

Legendre 



40Strong Formulation

Finite Element Method

Integrate By Parts 

Again



41Volume Integral



42Split Form

Gauss Lobatto 

Legendre 

Interpreted as 

sub-cell volume 

differencing operator



43Flux Splitting

Kennedy & Gruber PirozzoliStrong Form



44Surface Flux Consistency

Kennedy & Gruber



45Robustness Results

16 Fourth-Order Elements
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47Multiscale Problems



48Adaptive Mesh Refinement



49AMR Operators

Projection/Refine

Restriction/Coarsen



50Verification

2L1P 2L2P



51Feature-Based Tagging



52hp-Adaption

p=1

2nd-order

p=1 - 4

2nd- to 5th-order
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55Overall Strategy

• Multidisciplinary

• CFD

• Atmospheric turbulence

• Structural dynamics

• Controls

• Acoustics

• Multi Mesh-Multi Solver Paradigm

• Near-body unstructured mesh 

with sub-layer resolution

• Off-body structured/Cartesian high-order

discontinuous Galerkin solver

• Adaptive mesh refinement (p4est)

• Overset meshes (TIOGA)

• HPC

• Scalability

• In-situ visualization/data reduction

Computational Framework

W2A2KE3D

Off-body

Wyoming Wind and Aerospace Application Komputation Environment



56Solvers

NSU3D
• High-fidelity viscous RANS analysis

• Resolves thin boundary layer to wall

• O(10-6) normal spacing

• Suite of turbulence models available

• Stiff discrete equations to solve
• Implicit line solver

• Agglomeration Multigrid acceleration

• High accuracy objective 
• 1 drag count

• Unstructured mixed element grids for 
complex geometries 

• Validated through AIAA Drag/High-
Lift Prediction Workshops 

DG4est
• High-order discretization

• Discontinuous Galerkin method
• Split form w/ summation-by-parts

• Adaptive mesh refinement
• p4est AMR framework

• Dynamic adaption

• hp-refinement strategy



Motivation

Governing Equations

Discretization

Goals

Results

Conclusions

Future Work



58Wind Energy

• Simulation-based analysis, design and optimization 
and for large wind plant installations

• Largest gains to be had at the wind plant scale

• 20% to 30% installed losses

• Optimization of siting

• Operational techniques for increased output and life

• Development of control techniques at high fidelity

• Blade-resolved models enable:

• Accurate prediction of flow separation/stalling

• Effect on blade loads, wake structure

• Interaction with atmospheric turbulence structures

• Incorporation of additional effects

• Icing, contamination (transition)

• Acoustics (FWH methods)
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Wind Farm Simulation
Lillgrund 48 Wind Turbine Farm 
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AIAA Paper 

2017-3958
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AIAA Paper 

2017-3958

Mesh Resolution Study



63NREL 5MW

AIAA Paper 

2017-3958

Inflow Velocity Sweep

Medium Mesh

¼〫Time Step
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65NREL WindPACT-1.5MW

2D Cross-Wake Stations

• 7 stations 
• 0.5 – 6.0 rotor diameters (D)

• 160 m x 160 m 
• 400 x 400 (Δx2: 40 cm x 40 cm)

2,880 Temporal Samples
• 16 rotor revolutions of data

• 2〫rotation data frequency 

• 31st revolution start

Axial Induction

Rotor Rotation

AIAA Paper 

2018-0256



66Wake Characteristics

Absolute tangential velocity 

Isocontour of velocity magnitude of 8.5 m/s

Vortex Generation, Merging & Hopping, Breakdown

AIAA Paper 

2018-0256



67Wake Breakdown

Near-Wake Mid-Wake Far-Wake

1D 2D 3D 4D 5D 6D 7D 8D 9D 10D 11D 12D

Breakdown Region

13D

Quantify This Region?AIAA Paper 

2018-0256



68Proper Orthogonal Decomposition

Axial

Radial

Azimuthal

0.5D 1.0D 2.0D 3.0D
AIAA Paper 

2018-0256
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70Siemens SWT-2.3-93

2.2M grid points per blade

0.5M grid points per tower

• Based on mesh res. study

• Total for Turbine:

7.1M grid points

Used for Wind Farm 

Simulations

AIAA Paper 

2017-3958
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72Lillgrund Wind Farm

10 km

10
 k

m

48 Wind Turbines

• 1.55 billion DOFs

• 22,464 cores

• Domain

10 km x 10 km

• Smallest element 

in boundary layer

7E-6 m

• 10 magnitudes of 

spatial scales

• 192 near-body 

grids

• 360 cores 

(Visualization)

AIAA Paper 

2017-3958
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75Conclusions

Developed DG Method viable for Extreme Scale

Computational Efficient

Parallel Scalable

Robust

Multiscale

Real Applications

Largest Overset Simulation

Largest Blade-Resolved Wind Farm Simulation

Enabler of Future CFD Technologies and Reseach



76Future Work

Fine-Grain Parallelism

Split Form Method Development

Turbulence Model Development

Error-Based AMR Criterion

Temporal Discretizations

AMR Time Step Sub-Cycling

Atmospheric Boundary Layer Physics
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82Explicit Runge-Kutta Methods

Butcher Tableau



83Split Form Action

(A + A)(B + B)

= AB+AB+AB+AB

(A + A)(B + B)(C + C)

= ABC+ABC+ABC+ABC+ABC+ABC+ABC+ABC



84Patch-Based AMR



85Overset

• High-Order interpolation

• Parallel enclosing cell search (donor-receptor) bases on ADT

• Modified for high-order curved cells

• Interpolation types supported

• HO FEM to HO FEM

• HO FVM to HO FEM

• 2nd-Order FVM to HO FEM

• 2nd-Order FVM to 2nd-Order FVM

TIOGA-Topology Independent Overset Grid Assembler



86NREL 5MW

AIAA Paper 

2017-3958

Time Refinement Study

Medium Mesh



87WAKE3D Scalability

Near-Body Off-Body Overset

Near-body 

CPU time

Off-body 

CPU time

Overset 

CPU time

6 Turbines 96 Turbines



88Atmospheric Inflow Conditions

NCAR WRF NREL SOWFA



89Time Step Sub-Cycling


