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2Motivation

• Information travels sequentially 
through network

– Forward propagation sets the 
neural states

– Back propagation updates the 
weights and bias

– Amdahl’s Law

• Theoretical speedup limited by 
serial execution

• Goal: minimize loss by updating 
the weight coefficients and bias 
vectors iteratively

– Updates to unknowns are 
approximate

• Optimization opportunities for 
accelerating training

Source: https://miro.medium.com/max/2500/1*ZB6H4HuF58VcMOWbdpcRxQ.png



3Deep Residual Networks

Parallelization Approaches
• Data-Parallel (easy – e.g. Horovod)

• Model-Parallel (hard – not model-partitioned serial propagation of data)

True Model Parallelism via Iterative Approach: Solve Each Block in Parallel
• Combine with Data-Parallel Techniques for multiplicative parallelization

• e.g. DP = 4-way parallelism, MP = 2-way parallelism, Total = 8-way parallelism

BL1 BL2 BL3 BL4



4Multigrid

[Reference] S. Gunther, et. al, “Layer-Parallel Training of Deep Residual Neural Networks”, SIAM.

Source: https://www.researchgate.net/figure/Illustration-of-the-multigrid-V-cycle_fig2_328599327



5Network Partitioning

• Iterative Solution Procedure
• Propagate guess in block and 1st neighbor layer, restrict, solve coarse solution, update



6Implementation & Algorithm Verification
Implementation

• Forward Propagation Only (Back Propagation possible)

• C++: Wrap CuDNN kernels

• Enabled CUDA Streams for asynchronous execution

• MPI:

• Point-to-Point Communications (i.e. layer to layer comm.)

• No Collective Communication needed (e.g. no use of NCCL)

• TX-GAIA Supercomputer: 32 GB NVIDIA V100s



7Results: GPU Concurrency
Implementation

• Wrapped CuDNN kernels

• Enabled CUDA Streams for asynchronous execution

• Placed multiple layer-blocks on same GPU – each with own CUDA Stream

• Used OpenMP to parallel launch blocks from different CPU-threads

Execution Time



8Results
• MNIST Data Set

• 4,096 Layers

• 7 x 7 convolution layers

• 50 output channels

• Padding size: 1

• 3,248,524 parameters



9Results

• MNIST Data Set

• 4,115 Layers

• 7 x 7 convolution layers

• 20 output channels

• 16 fully connected layers

• Padding size: 1

• 2,071,328,150 parameters

4 GPUs: Computation to 

communication ratio is 92.8%

64 GPUs: Computation to 

communication ratio is 34.5%
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Thank You
Questions?


