
Layer-Parallel Training with GPU Concurrency 
of Deep Residual Networks

via Nonlinear Multigrid

Andrew C. Kirby

Siddharth Samsi, Michael Jones, Albert Reuther 
Jeremy Kepner, Vijay Gadepally

September 24, 2020

MIT Lincoln Laboratory Supercomputing Center

IEEE HPEC 4-3: AI / Machine Learning 3

Research was sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under 
Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as 

representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and 
distribute reprints for Government purposes notwithstanding any copyright notation herein.



2Motivation

• Information travels sequentially 
through network

– Forward propagation sets the 
neural states

– Back propagation updates the 
weights and bias

– Amdahl’s Law

• Theoretical speedup limited by 
serial execution

• Goal: minimize loss by updating 
the weight coefficients and bias 
vectors iteratively

– Updates to unknowns are 
approximate

• Optimization opportunities for 
accelerating training

Source: https://miro.medium.com/max/2500/1*ZB6H4HuF58VcMOWbdpcRxQ.png



3Deep Residual Networks

Parallelization Approaches
• Data-Parallel (easy – e.g. Horovod)

• Model-Parallel (hard – not model-partitioned serial propagation of data)

True Model Parallelism via Iterative Approach: Solve Each Block in Parallel
• Combine with Data-Parallel Techniques for multiplicative parallelization

• e.g. DP = 4-way parallelism, MP = 2-way parallelism, Total = 8-way parallelism

BL1 BL2 BL3 BL4



4Multigrid

[Reference] S. Gunther, et. al, “Layer-Parallel Training of Deep Residual Neural Networks”, SIAM.

Source: https://www.researchgate.net/figure/Illustration-of-the-multigrid-V-cycle_fig2_328599327



5Network Partitioning

• Iterative Solution Procedure
• Propagate guess in block and 1st neighbor layer, restrict, solve coarse solution, update



6Implementation & Algorithm Verification
Implementation

• Forward Propagation Only (Back Propagation possible)

• C++: Wrap CuDNN kernels

• Enabled CUDA Streams for asynchronous execution

• MPI:

• Point-to-Point Communications (i.e. layer to layer comm.)

• No Collective Communication needed (e.g. no use of NCCL)

• TX-GAIA Supercomputer: 32 GB NVIDIA V100s



7Results: GPU Concurrency
Implementation

• Wrapped CuDNN kernels

• Enabled CUDA Streams for asynchronous execution

• Placed multiple layer-blocks on same GPU – each with own CUDA Stream

• Used OpenMP to parallel launch blocks from different CPU-threads

Execution Time



8Results
• MNIST Data Set

• 4,096 Layers

• 7 x 7 convolution layers

• 50 output channels

• Padding size: 1

• 3,248,524 parameters



9Results

• MNIST Data Set

• 4,115 Layers

• 7 x 7 convolution layers

• 20 output channels

• 16 fully connected layers

• Padding size: 1

• 2,071,328,150 parameters

4 GPUs: Computation to 

communication ratio is 92.8%

64 GPUs: Computation to 

communication ratio is 34.5%



10Acknowledgements

Lincoln Laboratory Leadership

Dave Martinez, Steve Rejto, Marc Zissman

Lincoln Laboratory Supercomputing Center

William Arcand, David Bestor, William Bergeron, Chansup Byun,

Matthew Hubbell, Michael Houle, Anna Klein, Peter Michaleas,

Lauren Miliechin, Julie Mullen, Andrew Prout, Antonio Rosa, Charles Yee

Compute Time

TX-Green AI Accelerator (TX-GAIA)

Funding

MIT-Air Force AI Innovation Accelerator



Thank You
Questions?


