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Abstract—A Multigrid Full Approximation Storage algorithm
for solving Deep Residual Networks is developed to enable neural
network parallelized layer-wise training and concurrent com-
putational kernel execution on GPUs. This work demonstrates
a 10.2x speedup over traditional layer-wise model parallelism
techniques using the same number of compute units.

Index Terms—Deep learning, residual networks, multigrid.

I. INTRODUCTION

Improvements in computing power have driven resurgence
and significant advancements in Machine Learning and, specif-
ically, Deep Learning [1], [2]. To realize these improvements,
the transition from the Dennard-scaling era of increasing CPU
clock frequencies through the miniaturization of transistors
to the Multicore era [3] has compelled parallel algorithmic
development. For Supervised Learning, the primary parallel
methodology employed is data parallelism which trains neural
network models by evaluating multiple data samples simul-
taneously on separate hardware components, computing their
respective model parameter gradients with respect to the input
data sample, and collectively averaging the gradients which
are then used to update the model parameters.

However, in the post-Moore’s-Law era composed of increas-
ingly parallel hardware (within and between compute units),
data parallelism suffers from global collective communication
patterns, which limit the long-term performance capabilities.
Further, data parallelism does not address model size limi-
tations or sequential evaluation of the neural network using
forward or backward propagation. An orthogonal approach,
which can be paired with data parallelism, to address model-
size limitation is model parallelism, which partitions a model
across multiple compute units. However, traditional model
parallelism approaches also fail to address the sequential
evaluation of neural networks, thereby being constrained in
performance by Amdalh’s Law1. To circumvent Amdahl’s
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1Amdalh’s Law states the maximum speedup of an algorithm is limited by
the fraction of sequential procedure in a program.

Law, we develop an asynchronous layer-parallel algorithm for
Graphical Processing Units (GPU) enabling constant asymp-
totic execution time independent of the number of neural
network layers.

Beyond hardware trends, a number of applications such
as image classification, video recognition, natural language
processing have relied on increasingly deep neural networks.
For example, Figure 1 describes winning entries from the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)
[4]. In this and other similar applications, deeper networks
can often provide greater performance (e.g., accuracy). How-
ever, training such networks requires significant increase in
computational power required. For example, the authors of [5]
indicate a 3.4 month doubling time in computing requirements.
A significant number of deep neural network architectures fall
into the class of deep residual networks.

II. DEEP RESIDUAL NETWORKS

Deep Residual Networks have been demonstrated to have
superior performance for supervised learning techniques ap-
plied to real-world applications such as image classification
problems [6] and various other technologies [7], [8], and have
resolved network training issues due to vanishing gradients
by enacting a skip connection allowing gradient information
to accumulate and bypass multiplicative operators.

Residual neural networks (ResNet) are composed of residual
blocks stacked in N -layers of the following structure:

un+1 = un + hF (un;θn) , for n = 0, . . . , N − 1 (1)

with u,θ ∈ Rq being the layer state and parameters, respec-
tively, and q is the layer width, F is the feature transformation
operator (e.g. activation of convolution and bias), and h is a
scaling factor.

A ResNet can be naturally described mathematically as an
Initial Value Problem (IVP) such that

∂u(t)

∂t
= F (u(t);θ(t)) , ∀t ∈ T (2)

where T ⊆ R+ ∪ {0}. Equation (2) can be discretized by
the explicit Forward Euler Method [9], [10] leading to the
formulation in (1) where h represents the discrete time step
size.
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Fig. 1. Analysis of ILSVRC Winners from 2010-2017. The y-axis corresponds to Top-5 error rate (%) of winning entries. An observable trend in image
classification and other applications is the correlation between performance and increased network depth.

III. MULTIGRID METHODS

Multigrid (MG) methods are iterative algorithms that accel-
erate the solution convergence of a system of equations. The
technique is traditionally applied in scientific and engineering
applications such as problems found in Computational Fluid
Dynamics [11], [12], and, more recently, in Deep Learning
including the acceleration of training optimization [13] and
layer parallelism on CPUs [14]. This work follows [14] and
extends the algorithm to GPUs and enables concurrent kernel
execution through NVIDIA’s CUDA Streams [15] and Deep
Neural Network (CuDNN) [16].

A. Multigrid Principles

The principle idea of Multigrid is to use multiple levels
of resolution to iteratively solve an error prescribed by the
residual equation governed by the system. Suppose we wish
to solve for the unknown u in the following:

Lu = f (3)
r := f − Lu (4)

L is a functional (linear or nonlinear) operating on the solution
u which is equal to a known source f . Given an approximate
solution u, the residual r is defined by (4); note that if
u = u, then r = 0. The construction of the MG algorithm
is independent of the set of equations or discretization setting.
These principles will be used to demonstrate the construction
of multigrid algorithm for solving the neural network states
via forward propagation. Consider the solution of the discrete
problem:

Lhuh = fh (5)

where the subscripts refer to the discretization of the contin-
uous formulation (3) on a level of step size h. Let uh be the
current estimate of uh obtained by approximately solving (3).
Since uh does not satisfy the equation exactly, then the non-
zero residual rh is given as:

rh = fh − Lhuh (6)

The objective of Multigrid is to solve for the solution correc-
tion δuh such that the exact solution is given by:

uh = uh + δuh (7)

Subtracting (5) from (6) yields the following:

Lhuh − Lhuh = rh (8)

If Lh is a linear operator, then substituting (7) into (8) results
in the correction equation:

Lhδuh = rh (9)

Assuming the errors on level h are high-frequency, the correc-
tion δuh can be computed more efficiently on a coarser level
H by solving the equation

LHδuH = IHh rh (10)

where IHh denotes a restriction operator which interpolates
the residual from the fine level h to the coarse level H .
If (10) contains low computational work, it may be solved
exactly by direct or iterative methods. Alternatively, the above
procedure may be applied recursively on coarser levels to yield
an approximate solution to the correction δuH itself. Once the
correction is computed, an update is employed on the fine level
to correct the solution:

unewh = uoldh + IhHδuH (11)

where IhH is a prolongation operator which interpolates the
coarse level correction to the fine level. Following the fine-
level update, the solution may be solved approximately again.
This process is known as relaxation which may be repeated
until an acceptable level of error tolerance is achieved. Note
that when the fine level solution is achieved, then rh = 0 and
(9) is solved trivially δuH = 0. Thus no further corrections to
the fine level solution are produced.
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B. Full Approximation Storage (FAS)
Suppose the operator in (8) is nonlinear, then the equation

can no longer be replaced by Lhδuh, thus modifications are
needed to accommodate this nonlinear behavior. This is done
by introducing a new coarse level variable uH :

uH = I
H

h uh + δuH (12)

where I
H

h represents the restriction operator which transfers
the fine level solution to the coarse level. The analogue
nonlinear equation to (10) is as follows:

LHuH − LHI
H

h uh = IHh rh (13)

Recall the middle and right terms of (13) are known quantities
leaving uH as the only unknown variable. Thus it is useful to
introduce a new variable SH such that

LHuH = SH (14)

where SH := LHI
H

h uh + IHh rh (15)

On the coarse level, the set of equations defined by (14) are
analogous to (5) so similar solution techniques can be applied
to solve for the coarse level correction. Lastly, once the coarse
level correction unewH is solved by (14), the fine level solution
variables are updated as follows:

unewh = uoldh + IhH

(
unewH − IHh uoldh

)
(16)

which, utilizing (12), is written finally as

unewh = uoldh + IhHδuH (17)

C. Multigrid for Residual Network Forward Propagation
Residual Networks correspond to a time-discretized Ordi-

nary Differential Equation IVP, and our goal is to remove the
serial propagation of information by forward and backward
propagation through network layers. We apply the iterative
FAS MG scheme to the layers of the network. The application
of Multigrid to the time dimension in Computational Physics
is known as the Multigrid Reduction In Time (MGRIT)
algorithm [17], [18] and has been demonstrated to achieve
significant speedups when sufficient computational resources
are utilized [19]–[21]. This algorithm allows the layers to be
partitioned into local blocks, which can be solved concurrently
and in parallel, thus, breaking Amdahl’s Law limitation within
the training process of neural networks. We will cast Residual
Networks as the nonlinear system in (3) to formulate the MG
approach.

Let uh denote the approximate layer state to the true
solution uh, and let Uh =

(
u0
h, . . . ,u

N−1
h

)
denote the array

of layer states in the neural network composed of N residual
blocks on the level with step size h. The forward propagation
algorithm corresponding to (1) and (3) can be written as:

u0
h

u1
h − hF (u0

h,θ
0
h)

...
uN−1
h − hF (uN−2

h ,θN−2
h )


︸ ︷︷ ︸

Lh(Uh,θh)

=


Finy
0
...
0


︸ ︷︷ ︸
fh

(18)

where Fin corresponds to the network operator and y repre-
senting the data sample. Let Uh denote the approximation
of Uh such that Uh = Uh + δUh and define the notation
Lh

(
U ,θ

)
:= L

(
Uh,θh

)
. We express the solution error via

the residual equation corresponding the level with step size h:

Rh := fh −Lh

(
U ,θ

)
(19)

= Lh (U ,θ)−Lh

(
U ,θ

)
(20)

= Lh

(
U + δU ,θ

)
−Lh

(
U ,θ

)
(21)

Equation (21) is rearranged and a variable substitution is
applied such that the correction equation is given as follows:

Lh (V ,θ) = Lh

(
U ,θ

)
+Rh (22)

where V = U + δU . The residual equation in (22) can be
solved on a coarse level with step size H for V resulting in
the solution correction δU = V −U .

To construct the multilevel hierarchy of the neural network,
we define a coarsening factor c such that every cth layer within
the level is additionally assigned as a member to the coarser
level as demonstrated in Figure 2. The coarsening process
can be applied repeatedly to make successive coarser levels
containing fewer layers. To solve (22) on the coarse level H
for Residual Networks, the fine level residualRh, approximate
solution Uh, and network parameters θh are restricted to the
coarse level by injection (copy) for every cth-layer. These are
denoted as C-Layers as displayed in Figure 2. That is, the
restricted solution on the coarse level is given as follows:

UH =
(
u0H , u

1
H , . . . , u

NH−1
H

)
, where unH = unch (23)

The coarse level analogous expression of (22) reads

LH (VH ,θH) = LH

(
UH ,θH

)
+RH =: SH (24)

and we define the coarse-level nonlinear operator LH as

LH (UH ,θH) =


u0
H

u1
H −HF (u0

H ,θ
0
H)

...
uNH−1
H −HF (uNH−2

H ,θNH−2
H )

 (25)

where the coarse level feature-transformation operator FH is
scaled by H = ch. This is used to approximate the information
transfer between C-Layers. In a two-level MG method, VH is
solved directly in (24) providing the coarse-level error δUH =
VH−UH . The fine-level solutions in the C-Layers are updated
via unch ← unch + δun

H .
Lastly, as shown in Figure 3, the F-Layers within a layer

block are updated directly via F-relaxation using sequential
forward propagation. The transfer of information between
layer blocks and partitions is achieved by C-relaxation via
sequential forward propagation using the last F-Layer in the
preceding layer block.
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Fig. 2. Neural network layer partitioning with coarsening factor c = 4. Each layer block is composed of a c layers.

Fig. 3. C-relaxation: forward propagation from preceding F-Layer to C-Layer. F-relaxation: forward propagation from C-Layer to F-Layers in block.

Algorithm 1: ResNet Multigrid FAS Scheme
1. FCF-Relaxation to Lh (Uh,θh) = fh
2. Restrict residual Rh and approximate solution Uh:
Rn

H ← Rnc
h , U

n

H ← U
nc

h for n = 0, . . . , NH − 1
3. Solve LH (VH ,θH) = LH

(
UH ,θH

)
+RH

4. Solve coarse-level error: δUH = VH −UH

5. Update fine-level approximate solution:
unch ← unch + δun

H for n = 0, . . . , NH − 1
6. Check convergence:
if ||Rh|| ≤ tol then

Return;
end
Proceed to step 1;

D. Implementation

Algorithm 1 outlines the solution procedure using the MG
FAS scheme for a two-level network approach. The implemen-
tation of the algorithm for forward-propagation was performed
in C++ wrapping NVIDIA’s CuDNN [16] library kernels.
CuDNN’s API allows the use of CUDA Streams enabling
asynchronous and concurrent execution of kernels. Each layer
block shown in Figure 3 is assigned a unique CUDA Stream
allowing threads blocks to be solved concurrently. To achieve
concurrent execution, kernels are launched in parallel using
OpenMP assigning one CPU thread per layer block. Addi-
tionally, the usage of multiple GPUs for model-parallelism is
implemented using the Message Passing Interface (MPI) [22].
The layer blocks are distributed into contiguous model par-
titions across GPUs, and distributed memory communication
is performed during the C-relaxation phase for abutted layer
blocks residing on different GPUs.

Fig. 4. Residual convergence rates for varying network layer depths demon-
strating network layer-size independence.

IV. NUMERICAL EXPERIMENTS

Herein, we demonstrate the algorithm using the MIT Su-
percloud supercomputer TX-GAIA [23], which is composed
of 448 compute nodes, each node contains two 2.5GHz Intel
Xeon Gold 6248 (20-core) processors with 384 GB of RAM.
Every node contains two NVIDIA Tesla 32GB V100 GPUs,
both connected to the first CPU only. These results utilize
a 25 Gb/s Ethernet interconnect using Mellanox ConnectX-5
adapters connected to a single non-blocking Arista DCS-7516
Ethernet core switch, noting that NVLink is not present in the
system. Note that Multigrid is independent of architecture, and
can be employed on legacy hardware such as CPUs or FPGAs.
MG can be used in conjunction with data-parallelism for the
training of neural networks, but we restrict our experiments
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Fig. 5. Compute execution time line within one NVIDIA V100 GPU demonstrating kernel concurrency.

to exclusively explore performance metrics of the algorithm
as a model-parallelism approach. We utilize the MNIST [24]
data set for testing, which is composed of 60,000 hand-written
digits encoded as 28 × 28 pixel single channel (grey-scale)
images.

A. Verification and Layer-Independent Convergence

To ensure algorithmic correctness, we perform a conver-
gence study on residual networks of various layer-depth
counts. Figure 4 demonstrates the L2-norm convergence histo-
ries of the residual vector Rh found in (19). Note that as more
Multigrid Cycles are utilized, ‖Rh‖L2

→ 0 implies U → U
meaning the approximate solution converges to the analytic
solution normally obtained by sequential forward propagation.

Further, Figure 4 shows the norm values for all networks
composed of different layer counts converge with similar
behavior down to ‖Rh‖L2

≤ 10−9. This indicates an im-
portant property that the solution convergence is independent
of the network depth. Thus, given enough computational
resources, this property will provide approximate constant time
to solution evaluation of arbitrarily-deep networks.

Secondarily, an approach known as early stopping from
One-Shot methods [25] can be applied such that the solution
convergence is stopped after a fixed number of iterations.
This provides an approximate solution which can be used
to generate approximate neural network gradients for the
training optimization process. For this work, we find that two
cycles suffice, providing accurate state estimates resulting in
approximately the same Top-1 error rates after each epoch of
training for the MNIST data set.

B. GPU Concurrency

The aforementioned implementation utilizes NVIDIA’s
Cuda Streams to enable concurrent kernel execution. Using
NVIDIA’s Profiler (nvprof), Figure 5 shows an excerpt of the
kernel execution time line for a single GPU computing a MG
cycle composed of convolution layers. As seen in the figure, 5-
way kernel concurrency is achieved. However, the number of
registers within the GPU prevents multiple convolution kernels
from executing simultaneously, thus limiting the performance
for the exposed parallelism. At present, the concurrent execu-
tion capability is not fully realized due to this limitation but
will allow for higher throughput in future architectures.

C. Multi-GPU Parallel Inference

Next, we test single image inference via the Multigrid
Layer-Parallelism approach on a 4,096 layer Residual Neural
Network containing 3,248,524 parameters. The network is
composed of an opening convolution layer with a 7×7 kernel,
50 output channels, one layer of padding, single striding, and
a Rectified Linear Unit (ReLU) activation function. This layer
is followed by 4,092 residual convolution layers of the same
dimensions and activation functions, and terminated by a fully
connected layer mapping the output to a 10-element softmax
function paired with cross-entropy loss.

Figure 6a shows the performance profile comparison of
the Multigrid algorithm compared to the serial forward prop-
agation approach. When using a single GPU, Multigrid is
approximately four times slower; this is expected as MG is an
iterative method requiring multiple evaluations of the network.
However, as we distribute the model over multiple GPUs,
particularly greater than three GPUs, the inference time is re-
duced achieving a speedup over the sequential approach. Using
four GPUs, MG is 1.25x faster and when using 24 GPUs, it
is 4x faster. We note that as the model is partitioned more
finely, more distributed memory communication is introduced
causing the performance to be limited. This is particularly true
for heterogeneous architectures composed of CPUs as hosts
and GPUs as accelerators.

D. Multi-GPU Parallel Training: 3 Million Parameters

To study the effect of communication, we examine the
training phase of the same neural network used for the
inference study. Figure 6b shows the performance comparisons
of the serial method, Multigrid, and the traditional sequential
partitioned model (PM) layer-parallel method2. When four
or more GPUs are utilized, MG is the superior algorithm
providing up to 3.5x speedup over serial and 5x speedup over
the PM method. Figure 6c demonstrates the timing decom-
position elucidating the effect of communication on parallel
strong scaling. Computation is evenly distributed across each
compute device as more devices are added, and the parallel
execution in log-log scale shows near-perfect parallel strong
scaling. In contrast, as more GPUs are used to partition

2The model is partitioned, layer-wise, over multiple GPUs; each GPU
contains a subset of the network’s layers, and the evaluation of the network
is serialized across the GPUs.
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(a) Inference Performance (b) Training Performance (c) Timing Decomposition

Fig. 6. Parallel strong scaling of forward propagation for a 4,096-layer Residual Neural Network composed of 3,248,534 parameters.

the network, the communication becomes the performance
bottleneck. In the case of 64 GPUs, 97% of the evaluation
time is consumed by the communication.

Fig. 7. 4,115-layer Residual Network composed of 2,071,328,150 parameters.
Model Partitioned is serial execution distributed across multiple devices.

E. Multi-GPU Parallel Training: 2 Billion Parameters

The 3.25 million parameter model highlighted the effects
of the ratio of computation to communication with respect to
the achievable performance via Multigrid Layer-Parallelism.
To exploit this further, we derive a computation-intensive
residual network composed of 4,115 layers: an opening con-
volution layer [7 × 7 kernel, 20 output channels, padding=1,
single stride, ReLU], 16 repeated sequence blocks containing:
one fully connected layer with matching input and output
dimensions, and 256 residual convolution layers matching
the opening convolution layer specifications. Lastly, the net-
work is computed with a fully connected layer to a softmax
function with cross-entropy loss. This model contains a total
of 2,071,328,150 parameters, which is on the order of the
Megatron-LM [26] model containing 8.3 billion parameters.

The 18 fully connected layers greatly increase the floating-
point operation (FLOP) counts, therefore increasing the arith-

metic complexity defined as the ratio of FLOPs performed
to the bytes transferred for the computation. Additionally, the
number of model parameters requires some form of model
parallelism as it is too large to reside on a single GPU.
Thus, we will compare Multigrid to the traditional Layer-
Wise Parallelism, which partitions the model across compute
devices and performs serial network evaluation.

Figure 7 displays the parallel strong scaling performance
comparing the Multigrid algorithm to the layer-wise paral-
lelism method, denoted as Model Partitioned. While each
method utilizes the same number of GPUs, it is clear that
Multigrid outperforms its counterpart when using at least four
GPUs. A speedup of 1.3x is achieved when four GPUs are
utilized and a speedup of 10.2x is achieved when 64 GPUs
are utilized. In the case of using four GPUs for MG, the
computation to communication ratio is 92.8%, highlighting
experimentally, the high arithmetic intensity. This ratio drops
to 34.5% at 64 GPUs implying the performance becomes lim-
ited due to communication exhibiting low arithmetic intensity.

V. CONCLUSION

This work exposed more parallelism within supervised
Deep Learning, which can be paired with data-parallelism ap-
proaches. For model training and inference, Multigrid demon-
strates avenues of increased throughput for compatible net-
work architectures exhibiting high arithmetic intensity rela-
tive to the computing architecture utilized. We demonstrated
performance gains up to 10.2x using NVIDIA V100 GPUs,
a heterogeneous architecture tailored for high-compute and
low-data movement. The algorithm is favorable towards archi-
tectures with improved communication interconnects between
devices.

Lastly, the current state of hardware demonstrates limited
kernel-execution concurrency, specifically in the context of
convolution operators. Thus, the performance of this algorithm
and implementation has not been fully realized. This algo-
rithm will improve in future computer architectures containing
massive thread-based hardware parallelism indicative of future
exascale-era architectures [27]. Additionally, this algorithm
can be implemented in conjunction with data-parallel tech-
niques for multiplicative-compounding parallelism as required
for next-generation supercomputing systems.
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