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The Discontinuous Galerkin (DG) method provides numerical solutions of the Navier-
Stokes equations with high order of accuracy in complex geometries and allows for highly
efficient parallelization algorithms. These attributes make the DG method attractive for
large eddy simulation (LES). Recently developed kinetic energy preserving flux schemes
are adopted to achieve a minimally dissipative DG solver which is augmented with two
different subgrid scale closure models: constant coefficient Smagorinsky Model (CCSM),
and Dynamic Heinz Model (DHM). For the dynamic models, a modal cut-off filter is
adopted as the test filter. We consider the Taylor-Green Vortex flow at Reynolds number
Re = 1600. We find that the kinetic energy preserving flux schemes provide stable solutions
for the severely under-resolved simulations using high polynomial orders at much lower
cost than polynomial de-aliasing. However, it is also found that although the PI scheme
very closely conserves kinetic energy in the inviscid limit, it displays significant numerical
dissipation for the Re=1600 case. The constant Smagorinsky SGS model adds too much
dissipation causing a too fast decay of kinetic energy. The DHM does add significantly less
dissipation leading to better results than CCSM but overall a too rapid energy decay is
predicted.

I. Introduction

Direct Numerical Simulations (DNS) resolves all velocity, length, and time scales in a turbulent flow
and are thus computationally too expensive for all but simple problems at low Reynolds numbers. In
Large Eddy Simulation (LES), only the large scales of turbulence are resolved and the small scales are
modeled. Both DNS and LES require many degrees of freedom and high order methods provide accurate
solutions with relatively fewer degrees of freedom compared to low order methods. Spectral methods are
commonly used in DNS simulations but they are limited to periodic Cartesian grid problems. Therefore,
they are too restricting since most problems of technical interest require an unstructured mesh (e.g. flow
over airfoils). The Finite element method is a high order method that can handle unstructured meshes,
this allows for high order accuracy within complex geometries. The particular Finite Element method used
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in this work is a Discontinuous Galerkin (DG) method. DG is used to discretize the compressible LES
Navier-Stokes equations. The LES equations are obtained by applying a spatial filter (or a spectral low-
pass filter) to the Navier-Stokes equations such that the small scales of turbulent motion are filtered out
and the effect of these so called subgrid scales (SGS) are modeled by an additional subgrid scale viscosity.
This means that by definition LES is an under-resolved simulation. For spectral methods it is well known
that the effect of aliasing1 in the non-linear convective term can cause numerical instabilities through an
accumulation of energy at the high modes. In this work we will first investigate the feasibility of two
different de-alisaing strategies to stabilize the numerical solution in LES without SGS model (implicit LES):
polynomial de-aliasing using a sharp cut-off filter in modal space and a new approach based on kinetic energy
conserving split-form flux approximations.2,3 We also investigate the performance of two SGS models: the
Smagorinsky model4 (constant coefficient and dynamic) and a dynamic model developed by Heinz.5 The
constant coefficient Smagorinsky model (CCSM) requires the specification of the model coefficient Cs and
the scalar filter scale ∆ of the low-pass filter operation that is used to derive the LES equations. With most
low order LES investigations using finite volume or finite difference methods, the low-pass filter operation is
not explicitly performed. Instead, it is assumed that the numerical discretization of the derivatives acts as
filter similar to a top-hat filter in space with a filter scale ∆ that is equal to the grid spacing δx. For the finite

volume method the definition is usually given by4 ∆ = V
1/3
c where Vc is the cell volume. In high order DG

methods, using the cubic root definition is not appropriate since each DG element approximates the solution
to a high order and hence it is not clear what expression should be used to obtain ∆ from the element size
and polynomial order. A second problem with the CCSM model is that the model coefficient Cs is flow
dependent and hence different values are required for different flows. More over, the CCSM model does not
perform well in flows that transition from the laminar to the turbulent state. For such flows, the CCSM model
predicts a SGS viscosity in all flows with velocity gradients and this added SGS viscosity usually delays the
laminar - turbulent transition significantly. Dynamic SGS models such as the dynamic Smagorinsky model
or the dynamic model developed by Heinz5 (DHM) calculate the model coefficient dynamically based on
the flow state. The dynamic models require the explicit application of a so called test filter operation that
is used to determine the model coefficient locally based on turbulence scaling laws. The DHM dynamic
model5 is derived from an underlying stochastic turbulence model leading to improved predictions compared
to the DSM for certain flows.5 In theory, the dynamic models should be able to predict laminar - turbulent
transition if the dynamic procedure in a laminar flow results in Cs = 0 and hence a negligible SGS viscosity.
We will investigate the suitability of using the sharp cut-off filter in modal space as a test filter for the dynamic
models and evaluate their model performance compared to the CCSM. The flow under consideration is the
Taylor Green Vortex test case6 at a Reynolds number of Re = 1600. At this Reynolds numbers, the flow
transitions from an initially laminar vortical flow (prescribed by an analytical velocity field) to a turbulent
flow not dissimilar to freely decaying grid generated turbulence. The flow is thus very challenging for any
SGS model.

II. Numerical Formulation

A. Discontinuous Galerkin Solver

The governing equations are the compressible Navier- Stokes equations representing the conservation of mass,
momentum, and energy and are given by:

∂

∂t


ρ

ρu

ρv

ρw

ρE

+
∂

∂x


ρu

ρu2 + p− τ11

ρuv − τ21

ρuw − τ31

ρuH − τ1iui + q1

+
∂

∂y


ρv

ρuv − τ12

ρv2 + p− τ22

ρvw − τ32

ρvH − τ2iui + q2

+
∂

∂z


ρw

ρuw − τ13

ρvw − τ23

ρw2 + p− τ33

ρwH − τ3iui + q3

 = 0,

where ρ is the density, u, v, w are the velocity components in each spatial coordinate direction, p is the
pressure, E is total internal energy, H = E + p/ρ is the total enthalpy, τ is the viscous stress tensor, and
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q is the heat flux. The viscosity is a function of the temperature given by the Sutherland’s formula. These
equations are closed using the ideal gas equation of state:

ρE =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2)

where γ = 1.4 is the ratio of specific heats. In all of the following, Einstein notation is used where the
subscript i represent spatial dimensions and has a range of 1 to 3. The solution vector is comprised of the
conservative variables and is shown under the time derivative.7

Discontinuous Galerkin (DG) methods combine ideas of finite element and finite volume methods allowing
for high-order approximations and geometric flexibility. The solver utilizes the Lax-Friedrichs8 method and
kinetic energy conserving schemes2,3 for the inviscid flux routine and a symmetric interior penalty (SIP)9,10

viscous flux routine. The governing equations are marched in time using an explicit 4-stage (fourth order)
Runge Kutta method.11 If used as an LES solver with an SGS model the SGS viscosity is simply added
to the molecular viscosity and the viscous flux contains both molecular and turbulence contributions. The
intent of this code is to be used as a far body solver with over-set capabilities and it is designed for high speed
performance and robustness capable of only structured Hexahedron meshes. DG is a subset of the Finite-
Element Method where each element is projected from physical space to a reference space. A polynomial
basis is used to approximate the solution in the projected reference space. All basis are equivalent however it
is often advantageous to pick a basis for certain characteristics. The basis used for this solver is the Lagrange
Nodal basis evaluated at Gauss Lobatto Quadrature points12 and the number of Gauss quadrature points
ngp is related to the polynomial degree of approximation by ngp = P + 1. The basis and test function
are created using a tensor product of Lagrange Interpolating polynomials which is a non-hierarchical nodal
basis. Polynomial orders of P = 1 up to P = 15 are considered in this work. A great advantage of the
DG method over continuous Spectral Elements is the high parallel efficiency capability, allowing for greatly
reduced simulation run times.

B. Filter Implementation in DG

Within the framework of a DG solver, high frequency content of the solution is stored in the higher order
modes of the polynomial basis. The Nodal basis used in this solver is not hierarchical, i.e. each mode of the
basis contains high order content13 as can be seen in Figure 1A which shows the basis functions of the nodal
basis for ngp = 4 (highest polynomial degree P = 3). In a hierarchical basis such as the Legendre Modal
basis, only the higher order modes contain higher order polynomial degrees as can be seen from Figure 1
B. Filtering in a hierarchical basis is straight forward since specific higher order modes can be damped by
multiplying the corresponding solution coefficient with value between 0 and 1. If certain higher order modes
are completely removed and the lower order modes are not affected then one speaks of a sharp modal cut-off
filter. Such filters have the nice property that a repeated application of the filter has the same outcome as
a single application of the filter. Higher order modes can not directly be removed from a ”nodal” basis. By
transforming the solution given in a ”nodal” basis to a solution given in a ”modal” basis the coefficients of the
higher order modes can be modified and then the modified coefficients in the “modal” basis are transformed
back into the ”nodal” basis.13–15
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Figure 1. Basis functions up to polynomial degree P = 3 for A: the Nodal basis (Gauss-Lobatto Lagrange
polynomials) with ngp = 4 and B: the Legendre Modal Basis

Here we follow the procedure outlined by Gassner et al.14 The ”nodal” mass matrix M and solution
coefficients b and mixed ”modal” mass matrix C and solution coefficients a are related by

U = Mb = Ca,

where U denotes the approximation of the solution. We denote the Nodal Basis by ψ(ξi) , the Modal Basis
by φ(ξi), ξ are the Gauss-Lobatto Quadrature Points, and wk are the Gauss-Lobatto weights associated with
each quadrature point. The mass matrices are defined by

Mij =

∫ 1

−1

ψψT dΩ =

ngp∑
k=1

ψi(ξk)ψj(ξk)wk, (1)

Cij =

∫ 1

−1

ψφT dΩ =

ngp∑
k=1

ψi(ξk)φj(ξk)wk. (2)

The solution coefficients in the modal basis b are obtained by

b = M−1Ca. (3)

Once the coefficients in the Modal Basis b are obtained, the filter operation is simply a matrix vector
multiplication

b̂ = Fb, (4)

where F is the sparse filter matrix (for the modal basis) and the hat symbol indicates that the coefficients
have been filtered. For the sharp modal cut-off filter, the value of Fi,i where i is the particular mode to be
modified is set to one for all i ≤ Pc and is set to zero for all i > Pc where Pc is the desired cut-off mode. By
using

a = C−1Mb, (5)

and substituting the modal coefficients b with filtered modal coefficients b̂ gives the filtered solution coeffi-
cients â in the nodal basis

â = C−1M (Fb) . (6)

By introducing the matrices
B = C−1M, B−1 = M−1C, (7)

and
F̂ = B−1FB, (8)
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we can finally write the sharp modal cut-off filter operation as

â = F̂a. (9)

It is worth noting that the modified filter matrix F̂ can be assembled as a pre-processing step and does not
have to be recalculated during the simulation. Fig. 2 shows a simple 1-D example of the modal filtering
approach. We use a function f that has a low and high frequency content f(x) = cos(2.∗x) + 0.3∗ sin(8∗x)
(black line) on the interval [−π, π]. The function is well approximated by DG (green line) on N = 6
elements with a polynomial degree P = 4 (hence using ngp = 5 quadrature points shown as green dots).
The discontinuous nature of the approximation is also clearly visible by the “jumps” of the approximation
at the element boundaries. Applying the sharp modal cut-off filter so that modes with polynomial degree
larger than one are removed (Pc = 1) leads to the piece-wise linear approximation indicated by the red line
in fig. 2. Clearly, the sharp modal cut-off filter is able to remove the high frequency content of the function
f .

Figure 2. One dimensional example of the sharp spectral cut-off filter. Original function f(x) = cos(2.∗x) + 0.3∗
sin(8 ∗ x) (black line), DG approximation on N = 6 elements with fourth order polynomials P = 4 (green line,
dots represent the ngp = 5 quadrature points on each element), and filtered solution using the sharp spectral
cut-off filter with Pc = 1 (red line).

C. Polynomial dealiasing using a sharp modal cut-off filter

Polynomial aliasing occurs in under resolved simulations due to the quadrature errors that are introduced
when calculating inner products of the non-linear convective terms in the Navier-Stokes Equations.1 The
errors can lead to a build up of energy in the higher order modes and hence lead to instabilities of the simu-
lations. For DG simulations with lower polynomial orders there seems to be sufficient numerical dissipation
such that the energy in the higher order modes is dissipated sufficiently fast.14,15 For higher polynomial ap-
proximations which are more desirable from a convergence point of view and also for better parallel efficiency
the numerical dissipation is greatly reduced and not sufficient to remove the aliasing errors. One method
to prevent polynomial aliasing is to use more quadrature points in the evaluation of the inner products of
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the non-linear terms. However, this would require a significant alteration of the DG code. A second more
straight forward method is to increase the number of solution quadrature points for all solution operations
by increasing P (P+1 quadrature points) and then projecting the solution back to a lower order Pc by
applying the sharp modal cut-off filter. We will apply this method for polynomial de-aliasing to test the
implementation of the modal cut-off filter (which will later also be used for the dynamic SGS models). This
polynomial de-aliasing approach has previously been adopted by Laslo et al15 and Gassner et al.14 In the
context of LES, polynomial de-aliasing can be viewed as an explicitly filtered LES.

III. LES SGS Models considered

A. Smagorinsky Model

The LES equations are obtained by applying a low-pass filter to the Navier-Stokes equations such that the
small scales of turbulent motion are filtered out and the effect of these so called subgrid scales on the resolved
scales are most commonly modeled by an additional subgrid scale viscosity. The SGS viscosity provides the
additional dissipation that occurs in the unresolved small scales. We will denote the low pass-filter operation
used to derive the LES equations by an overbar e.g. ρ denotes the filtered density. In compressible flows,
turbulence modeling is based on density weighted (Favre) filtering4 for all variables except pressure and
density. For example, the Favre filtered velocity is

ũ =
ρu

ρ
. (10)

As mentioned in the introduction, in most LES applications the low-pass filter operation (called the grid
filter) is not performed explicitly, but implicitly through the numerical approximation. In this work, we
consider cases without using an explicit low-pass filter operation and cases where we us the sharp modal
cut-off filter as grid filter. The additional SGS viscosity is defined as

µsgs = ρ(Cs∆)2
∣∣∣S̃∣∣∣ , (11)

where Cs is a model parameter, ∆ is the length scale associated with the grid filter and S̃ is the magnitude
of the Favre averaged rate of strain tensor given by

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
,
∣∣∣S̃∣∣∣ =

√
2S̃ijS̃ij . (12)

In the constant coefficient Smagorinsky Model (CCSM) the model parameter is set to Cs = 0.17.16 The
commonly used definition of the filter size has to be modified in the high-order DG method considered in
this work . Since the DG elements are typically much larger than finite volume cells and resolve much more
detail, the filter width ∆ should be defined as a function of the polynomial order of accuracy P . Here we
propose the simple approach

∆ = Cp × (∆x∆y∆z)1/3, (13)

where the parameter Cp is estimated to be given by

Cp =
1

2

1

P + 1
, (14)

with P the polynomial order of approximation of the DG elements.

B. Dynamic Heinz Model Definition

In the dynamic Heinz model5 (DHM) the Smagorinsky coefficient is calculated based on the local instanta-
neous flow state and hence Cs = f(x, y, z, t), a function of space and time rather than simply defined as a
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constant. The dynamic calculation of the coefficient is based on an explicitly performed second level filter
operation called the test filter that is applied to the grid filtered variables. We denote the test filter operation
by a hat e.g. the test filtered density is denoted by ρ̂. Here we always use the sharp modal cut-off filter as
the test filter as described in section B. The main difference to the dynamic Smagorinsky model is that now
the Leonard stress tensor is modeled.

Lij = ρ̂ũiũj −
ρ̂ũiρ̂ũj

ρ̂
, Ld

ij = Lij −
1

3
Lkkδij , (15)

Details of the model derivation can be found in Gopalan and Heinz.5 The model coefficient in the Heinz
model is determined by

(Cs∆)2 = −Lij
̂̄Sij

d

α

∣∣∣∣Ŝd
∣∣∣∣3

α denotes the square of the test filter to grid filter width ratio α = ( ∆̂
∆

)2. Typically, α = 4 since the test

filter is often assumed to be twice the width of the grid filter.16 In the DG method adopted in this work we
calculate α using the expression for CP (14) giving

α =

(
(Pgrid + 1)

(Ptest + 1)

)2

. (16)

Here, Pgrid refers to the polynomial order of the DG method if no explicit grid filter operation is used or
to the polynomial order after the explicit grid filter (sharp modal cut-off with Pgrid = Pc is applied) and
Ptest is the polynomial order after applying the explicit test filter with Ptest < Pgrid. The implementation
of this model in typical finite difference and finite volume solvers has shown improved results achieved with
less stringent clipping or averaging of (Cs∆)2 as compared to the DHM. Here, we clip the dynamic constant
to be in the range 0 ≤ Cs ≥ 0.5.

IV. Taylor Green (TG) Vortex Flow

The advantage of using the Taylor Green Vortex case is that this flow has the same initialization for every
simulation and it is well documented providing a reliable comparison with other codes including DG. The
Taylor Green vortex is initially laminar and becomes fully turbulent in later stages making it a challenging
test case for dynamic SGS models. A disadvantage is the additional run time to obtain a fully turbulent
solution. We will focus on the Re = 1600 case for which highly accurate DNS results6 (obtained with a
spectral code using 512 modes) are available for comparison to our DNS (for code validation) and LES model
evaluation. Figure 3 shows vorticity contours at the initial condition (left) and towards the end of the run
for the spectral DNS.6
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A B

Figure 3. Taylor Green Vortex with Re=1600 showing contours of Z-Vorticity6 at t=0 (A) and t=20 (B)

The computational domain is given by Ω = [−πL, πL] × [−πL, πL] × [−πL, πL] and periodic boundary
conditions are applied in all directions. The Taylor Green Vortex Case was initialized based on the param-
eters: L = 1, Re = 1600, U0 = 0.1, ρ = 1, µ = 6.25 × 10−5, Pr = 0.71, and P0 = 0.714. These parameters
correspond to Ma = 0.1 such that the results can be safely compared to the incompressible spectral DNS
results.6 The initial velocity and pressure fields are given by

u = U0sin(
x

L
)cos(

y

L
)cos(

z

L
),

v = −U0cos(
x

L
)sin(

y

L
)cos(

z

L
),

w = 0,

p = p0 +
ρ0V

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
.

(17)

Relevant post processing quantities are the total kinetic energy

K(t) =
1

ρ0Ω

∫
Ω

ρ
UiUi

2
dΩ, (18)

and the total kinetic energy dissipation rate,

ε(t) = −dK
dt
. (19)

It should be noted here that the total dissipation of kinetic energy is calculated from the kinetic energy
by using a simple central difference approximation of the time derivative. Thus, the dissipation rate ε also
contains contributions from the numerical dissipation.6 Both the dissipation rate and time are normalized

for comparison with results from the High Order Workshop.6 Dissipation is normalized with
U3

0

L and time is

normalized with L
U0

. To distinguish between the total dissipation rate (including numerical dissipation) and
the actually resolved dissipation rate we also consider the resolved visous dissipation

ε1(t) =
1

ρ0Ω

∫
Ω

2µSijSijdΩ, (20)

and the pressure work

ε3(t) =
1

ρ0Ω

∫
Ω

p · ∂Ui

∂xi
dΩ, (21)

which is expected to be small in this nearly incompressible flow.
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V. Results

A. Well-resolved simulations

We consider the TG vortex case at Re = 1600 with a resolution of P = 6, N = 36 leading to DOF = 2523

for code validation. This resolution has been shown17 sufficient to achieve good agreement with the spectral
DNS results (DOF = 5123) when using the DG solver with the Lax-Friedrichs flux (DGLF). Figure 4 shows
a comparison between the DGLF results and the Pirozzoli Split Form (PI) for the kinetic energy (A) and
kinetic energy decay rate (B). Both results are very close to each other and agree well with the DNS. Figure

A B

Figure 4. Kinetic energy (A) and its decay rate (B) in the Taylor Green Vortex with Re=1600 using the
DGLF and PI methods with DOF = 2523.

5 shows the result for the pressure work over the course of the simulation and the values stay about one
order of magnitude below the total dissipation rate. To demonstrate that most of the dissipation is already

Figure 5. Pressure work for the Taylor Green Vortex with Re=1600 using the DGLF and PI methods with
DOF = 2523.

resolved at this resolution we compare the total dissipation ε and the resolved viscous dissipation rate ε1 for
the two approaches in figure 6. For both methods the resolved viscous dissipation is almost identical to the
total dissipation rate thus indicating negligible numerical dissipation. However, it is somewhat surprising to
see that the kinetic energy preserving PI method (shown in B) shows a slightly larger numerical dissipation
(smaller resolved viscous dissipation) that the DG method with the dissipative Lax-Friedrichs flux.
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A B

Figure 6. Comparison of the total dissipation ε and the resolved viscous dissipation rate ε1 for the DGLF (A)
and PI (B) approaches.

B. Under-resolved simulations without SGS model

We consider the TG vortex case at Re = 1600 with a much lower resolution of DOF = 643 compared to
the quasi DNS results obtained with DOF = 2523 presented in the previous section. Hence the simulations
presented here can be viewed as a typical implicit LES if the dissipative DGLF is considered. It has been
shown previously by several authors14,15,17 that under-resolved DG simulations of the TG flow become
numerically unstable for high orders due to polynomial aliasing. This is shown in figure 7-A where results
using DGLF are shown for varying polynomial orders keeping the total DOF ’s constant. It can be seen that
the lower order P = 1 and P = 3 simulations run stable (but are not accurate) and the high order P = 7
simulation becomes unstable. Using polynomial filtering with a sharp modal cut-off filter of order PC chosen
such that twice as many quadrature points are used15 (following the 2N rule for de-aliasing for compressible
flows) prevents the instability. This is demonstrated in figure 7-B where the modal cut-off filter is applied
to the residual at every Runge-Kutta stage. Hardly any difference can be seen for the P = 1 and P = 3
case due to the dominance of the numerical dissipation. For the P = 7 case the effect of the de-aliasing
is significant since the simulation now runs stable and provides results with a reasonable agreement with
the spectral DNS. Although the polynomial dealiasing approach stabilizes the solution it comes at a large
computational cost: the run-time for the high stabilized simulations is increased by a factor of about 30.

A B

Figure 7. Rate of kinetic energy decay in the Taylor Green Vortex with Re=1600: A: without dealiasing, B:
Polynomial dealiasing.
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In a recent paper, Gassner et. al have shown2,3 that kinetic energy preserving flux schemes provide
an efficient means of stabilizing under-resolved DG simulations. We confirm this finding here by adopting
the Pirozzoli kinetic energy preserving flux scheme in the Taylor Green Vortex with Re=1600. Figure 8
shows a comparison of the kinetic energy decay rate obtained using the Pirozzoli kinetic energy preserving
flux scheme (left) and the polynomial de-aliasing (right) approach. Both approaches stabilize the high-order
simulation but the PI flux scheme does so at a thirty-times lower computational cost. The low order P = 1
simulation shows some oscillations early on in the calculated kinetic energy decay rate. The two higher order
PI results display slightly larger decay rates than the corresponding filtered DGLF results. This is due to the
faster decay of kinetic energy (recall that ε− dK

dt ) in the PI simulations than in the filtered DGLF simulations
as shown in figure 9. As observed in the well resolved case above, this finding is somewhat surprising since
the Split-Form Pirozzoli method is designed to conserve kinetic energy under convection in the inviscid limit
and thus we expected overall less dissipative results.

A B

Figure 8. Kinetic energy in the Taylor Green Vortex with Re=1600: A: Split Form Pirozzoli, B: Polynomial
dealiasing.

A B

Figure 9. Kinetic energy in the Taylor Green Vortex with Re=1600: A: Split Form Pirozzoli, B: Polynomial
dealiasing.

A comparison of the resolved dissipation rate ε1 predicted by the two approaches is shown in figure 10.
The PI results show smaller resolved dissipation rate values than the filtered DGLF results confirming the
findings for the kinetic energy decay.

To investigate the question of the increased dissipation in the PI results further, we have performed
simulations of the inviscid TG with both PI and filtered DGLF approaches. Figure 11-(A) shows a comparison
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A B

Figure 10. Kinetic energy in the Taylor Green Vortex with Re=1600: A: Split Form Pirozzoli, B: Polynomial
dealiasing.

between the filtered DGLF (P = 7 filtered to P = 3) with N = 16, the PI approach with P3, N = 16 and
with P = 2, N = 16. The figure clearly shows that the PI method indeed very nearly conserves the kinetic
energy in the inviscid case. It should be noted that only the lower order P = 3 cases could be run to
completion, the higher order simulations crashed typically around t = 5. In the PI simulation with P3 the
kinetic energy is not perfectly conserved due to the pressure work ε3 as was also observed by Gassner et. al.2

The dissipation of kinetic energy due to ε3 is shown in (B) and the PI result with P3 shows very large values
whereas the P2 simulation shows negligible values and the filtered DGLF result displays small negative
values. It turns out that for the PI method ε3 is much lower for even polynomial orders than for odd ones.

A B

Figure 11. Kinetic energy (A) and dissipation due to pressure work ε3 (B) in the inviscid Taylor Green Vortex
flow.

This is demonstrated in figure 11 where ε3 is shown for the Re=1600 case obtained from the Split-Form
Priozzoli flux approach with even polynomial orders (A) and odd polynomial orders (B) keeping the DOF ’s
approximately constant. The pressure dilation work is about 100 times smaller with even polynomial orders.
A comparison of the kinetic energy decay (not shown) reveals no significant differences though. For the
remaining of the paper, we will thus consider mostly even polynomial order.

At this point it can only be speculated that the SIP implementation of the viscous terms could cause the
slightly increased numerical dissipation observed in PI method. We can indirectly confirm this speculation
by considering two additional versions of the Split-Form PI method: the PI-Roe method adds the dissipative
part of the Roe flux18 to the kinetic energy conserving PI flux and the PI-L2Roe adds the dissipative part of
a low-dissipation Roe solver.19 Similar combinations have been considered in reference.3 It is expected that
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even polynomial order odd polynomial order

Figure 12. Dissipation due to pressure work ε3 in the Re=1600 Taylor Green Vortex flow: even polynomial
order (left), odd polynomial order (right).

the PI-Roe method is the most dissipative method leading to the largest total kinetic energy decay rate ε
and the smallest resolved viscous dissipation rate ε1. Figure 13 shows a comparison of the dissipation rates
obtained with the three methods for a case with N = 8, P = 8, DOF = 723. What can be seen is that at
early times the total dissipation rate is actually smallest for the PI-Roe method (green line) and the resolved
dissipation is largest contrary to what is expected. It can only be speculated that for the PI and PI-L2Roe
methods with much smaller convective flux dissipation the viscous flux implemented by SIP is larger so that
overall a stronger numeircal dissipation is observed.

A B

Figure 13. Total dissipation rate (A) and resolved viscous dissipation for the Re=1600 case obtained with the
PI, PI-L2Roe, and PI-Roe methods.

C. SGS model results

The SGS models are tested for the Split-Form Pirozzoli flux approach in the Re=1600 TG case with a
resolution of N = 8, P = 8, DOF = 723. Figure 14 shows a comparison of the no-SGS case, the Smagorinsky
model, and the DHM. The constant Smagorinsky model adds dissipation even at the early laminar stages
and causes overall a significantly faster decay of kinetic energy. The DHM only adds a small amount of
dissipation during after the flow has become fully turbulent. This feature is expected from the dynamic
model and can be confirmed here.
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A B C

Figure 14. Kinetic energy (A), total dissipation rate (B) and resolved viscous dissipation rate in the Re=1600
TG flow using SGS models.

VI. Summary and Conclusions

The main objective of this work is to investigate the feasibility of using low dissipation kinetic energy
preserving split-form DG flux schemes in conjunction with dynamic SGS models for high-order LES. The
Taylor Green vortex flow at Reynolds number Re = 1600 is considered. We validate the solver using the
conventional DG with Lax-Friedrich flux and the new kinetic energy preserving split-form Pirozzoli (PI)
method through simulations of a well resolved case by comparison with results obtained from a pseudo-
spectral solver. We found that both methods provide very similar results but the PI method actually
showed a somewhat larger numerical dissipation. For under-resolved simulations such as LES, the use of
high polynomial orders causes numerical instability due to aliasing. Two methods for de-aliasing have been
investigated: polynomial de-aliasing through a modal cut-off filter and using the kinetic energy preserving
Pirozzoli flux scheme. The later is computationally considerably cheaper albeit slightly more dissipative.
It is speculated that the numerical dissipation observed in with the Split-Form Pirozzoli flux is due to the
SIP implementation of the viscous term. Not surprising, using a SGS model at the considered highly under-
resolved case adds additional dissipation causing the kinetic energy to decay too fast compared to the DNS.
The dynamic model does add much less dissipation confirming the overall suitability for transitional flows.
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